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In this report we introduce some computational
techniques for tne analysis and design of digital

communication systems, pecLsibly operating over a
nonlinear channei (a typical example s a digital
satellite system, with the transponder amplifier

working at or near saturation for better efficiency).
We first consider evaluation of error probabilities
when the disturbances are only incompletely known.
Then we describe a combined simulation-and-analytical
technique to evaluate the power density spectrum of a
digital signal passed through a nonlinear channel.
Next, we consider the oroblem nf designing and
evaluating the performance of the ~ptimum linear
receiving filter for transmission over a nonlinear
channel. Finally, we consider Ungerboeck codes: a new
class of multidimensiona! ~odes 1is introduced, its
applications discussed, and an important property
concerning their power spectral densities /v shown.

'KEY WORDS: Digital communication systems)—; Nonlinear
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1.6 INTRODUCTION

In the past few years, considerable attention has
been devoted to evaluating and optimizing the
performance of commercial digital communication

systems. Several studies have been devoted to the

performance improvement that can be achieved through a
more sophisticated design, and the mathematical level
of these studies is growing with the complexity of
these systems. Thus, the evaluation of their

performance becomes an increasingly more demanding

task.

The aim of this report is to introduce some new
techniques for the analysis and design of digital
communication systems. The emphasis here is placed on
the computational algorithms that avoid resorting to
simulation techniques, which might be either
prohibitively expensive, or not completely satisfactory

in terms of accuracy.

Thee digital communication systems that can be

studied using the techniques described in the following

are: high-rate transmission systems with limited
bandwidth; satellite and microwave radio-relay links
with nonlinearities; multi-path and fading
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transmission systems. The common feature of all these
systems, as we shall see in more detail in Section 3,
is that they can often be modeled as follows. At the
receiver front-end of the system there 1s a desired
signal component disturbed by an additive noise term.
Under the assumption that the noiseless portion of the
channel has a finite memory (i.e., the received signal
at any given time instant does not depend on the
infinite past of the transmitted signal) the number of
waveforms that can be observed, before the addition of
noise, in any time interval of finite duration is

finite.

Appendix A includes an overview of some of the
techniques for performance evaluation of communication
systems. The remainder of this report is devoted to a
detailed analysis of some of the techniques that have

been studied under this Contract.
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2.0 EVALUATION OF ERROR PROBABILITIES

In recent years, there has been an increasing
demand for the analysis of digital communication
systems, partly due to the availability of 1large
numbers of novel digital signal processing devices and
partly due to certain attractive features of digital
systems, as for instance the fact that digital signals
are more amenable to enciphering and deciphering than
analog signals for secure communication purposes.
Performance evaluation of these systems 1is generally
based on the average error probability criterion.
However, as digital communication systems become more
sophisticated, it turns out that many of the known
analytical and simulation techniques available for the

computation of error probability are either not

applicable or prohibitively expensive. This 1is for Eﬂi

example the case of digital communication systems such

as: systems operating on a nonlinear bandlimited n{
channel; satellite systems operating in a channelized 3
environment and a nonlinear transponder; }?3
spread-spectrum multiple access systems; microwave .:q
systems with cochannel 1interferences. Despite the ]

seemingly diverse nature of these systems, a unifying

P I

feature behind all of them is that at their receiver
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output there is a desired signal component disturbed by
an interference term plus noise. Let the interference
term be denoted by X. Then, the error probability for
all these systems can be expressed as an expectation of
a suitable known function with respect to the random
variable X. Usually, this expectation cannot be
evaluated directly, either because the statistics of X
are not known or because its computation would take too
long. Thus, various bounding and approximation

techniques have been considered.[1-19]

Basically, these techniques use a set of moments
of the random variable X. Ref. [33] includes which is
probably the most comprehensive approach to this
problem. It describes a class of upper and lower error
bounds that can be evaluated with modest computational
effort, and can be very tight, particularly when a
large number of moments can be evaluated with
sufficient accuracy. These bounds can usSe an arbitrary
number of moments of the random interference, and are
based on Krein-Nudel'man theory [2u-21]. They provide
the tightest possible bounds based on a given moment

information, and generalize several previously derived

theories.
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In many situations, however, use of moment
bounding techniques cannot be directly applied, either
because even the momens cannot be evaluated exactly or
because the additive noise does not have a known
probability density function. We consider separately

these two situations.

2.1 Probability Of Error For Digital Systems With

Inaccurately Known Interference

In this section we extend the moment bound theory
to the computation of error probabilities to a
situation in which the moments of the interference are

known only within a given accuracy.

The model assumed for the analysis is the
following: consider a digital communication system
where the output decision random variable at each

sampling instant is given by

(2.1) R = ah + X + v,

where a is the input information symbol taking on

values in a finite set, h is a constant, ¥V is an

arbitrary random noise with Known cumulative

distribution function, and X is the random
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interference, which is only known through a set of 533

intervals in which its moments lie. L

A situation 1like this c¢an occur in several
instances. For example, the exact statistics of the
interference may not be known, and only estimates of
the first moments may be available. Another example
arises when X represents the intersymbol interference
generated by a channel impulse response whose samples
are known only in a certain interval. This may occur
because those samples have been measured with finite
accuracy, or because we want to estimate the error

probability for a class of channel impulse responses.

The solution to this problem can be obtained using
a theory developed by Krein and Nudel'man 1in
conjunction with the so-called "Chebyshev-Markov
problem with moments in a parallelepiped"[2t]. This
theory deals with the evaluation of wupper and 1lower

bounds of the integral

b

(2.2) : :.[ G(x)dP(x)
a

where G(.) 1is a known function, and P(.) 1is the

cumulative distribution function of a random variable

whose first n moments are approximately known.
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An outline of the theory of moment bounds with
moments in a parallelepiped, as well as the derivation
of computational techniques for 1its solution, are

included in Appendix B.

2.2 Probability “f krror For Disturbances Known Only

Through Their Moments

Another case of 1interest arises when a signal of
known statistics is perturbed by interference and
noise, both of whom are known only through their

moments. In this case the situation is the following:

the observed signal is

(2.3 K = ah + X

where a is a random variable representing the wuseful

sigral and whose probability density function is known;

X is a random variable representing the disturbance, :
and whose first  'n moments are known. We want to y
evaluate the probability that R <crosses a given a
K
threshold t, i.e., the quantity Nk
o
I ‘.“‘
Y
(2.4) GR(t) = Prob{R>t] B
..‘
]
d
»
9
o)
3
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are taken in each waveforms, complex values must be
stored, and 1024 256-point Fourier transforms must be

evaluated.

For this reason, a particular attention has been
devoted to the computational shortcuts that can be
devised to reduce the computational complexity and/or
the storage requirement of the algorithm. Symmetries
arising in the signal set have been taken inte account,
thus reducing the dimensionality of the signal set by a
factor of M in most cases of practical importance.
Moreover, the particular structure of the matrix P has
been exploited, resulting in an iterative algorithm for

the computation of the matrix é(f) in equation (3.17).

The resulting computer algorithm can compute the
power spectrum of a digital signal with M up to 4, and
a memory L up to 5, in a reasonable time. An example
of the results that can be obtained by using this

program is reported in Fig.Z2.

23
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In conclusion, the computation of the power :
spectrum can be performed through the following steps: :ié
”

1. Determine the waveforms that are available at

the channel output, and their Fourier
transforms (use FFT, typically). Arrange them d
as the components of the vectors Qk(f)' j
1
o
2. Compute the quantities ga(f), 21(f), cy (), i

and @(f) from eqs.(3.11)-(3.15)

3. Compute the power density spectrum using

(3.16)-(3.18).

Although all these steps are computationally

straightforward, Step 1 may put a considerable burden
in terms of computer time and storage. In fact, if L ; 1
denotes the channel memory, and M the source alphabet
size, i.e., the number of different source symbols, the
number of waveforms to be stored is MLM . Moreover,
each waveform must be represented with an adequate o
number of samples, and its Fourier transform must be

-.‘_1
taken. Thus, for example, if L=U4, Mz=4, and 256 samples i

22
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The third quantity 1is the average amplitude

spectrum of the waveforms available from the channel:

(3.14) NGEEENGE

Finally, the fourth quantity of interest 1is the
average energy spectrum of the waveforms available at

the channel output:

M

» 1
(3.15) e (f) = z_'. p, &, (£)DQ(F)
=4

The continuous part and the discrete part of the
power density spectrum of the signal y(t) are then

given by:
(3.16) 4 (F)= L [c(f)- | a0 ] + £ Re [TE)AM (D]
and

(3.17) %d(i)-%l}k(ﬂla i 3(£-2/7)

L=-®

where

L _3 ?
(3.18)  A(f) = ¥ [89-4_ B.J ern{ r‘

R
21




we evaluate four quantities that play the fundamental
role in the expression of the power spectral density we
are looking for. The first is the average value, taken

over the source symbols, of the vectors Q,(f):

M
(3.11) e, (£) = Y by Q)
kw4
The i-th component of Sa(f) is then the average Fourier
transform of the wavefaorms available to the channel

output when the channel is in state 1.

The second quantity is the vector ¢ (f) whose j-th
component is the average Fourier transform of the

waveforms that, when output by the modulator, force it

to the state j. We have

M

(3.12) ci(f) = ) pLQ (f)DE,,
k=4

where

(3.13) D = diag [Wy,wy,...]

and [gkhj =1 if the source symbol A, takes the channel

from state i to state j, and zero elsewhere.

2u
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We are now in a position to derive the power
density spectrum of the digital signal (3.1). Only the
final results will be given, as the details <c¢an be

found in the book [25].

Let us denote by

(3.8) Wi = Prob{ch = 1}
the stationary state probabilities of the Markov chain,

i.e., the components of the unique probability vector w

such that

(3.9) ﬁ’l::lz

Denote then by gk(f) the row vector whose entries are
the Fourier transforms of the waveforms q(t;.,.),
according to the following rule: the i-th component of

the vector gk(f) is the transform of q(t;Ak,i). That

is, Qk(f) includes the Fourier transforms of the

waveforms corresponding to the source symbol Ak’ for 1

the different channel states. Letting also "
(3.70) p, = Prob{a =A } v k=z1,.00 M, :i%
"

oA

:. IJ

e
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As one can see, from state (xyz) the shift

register can move only to state (Wwxy), with probability

X if w=0(, and a if w=2.

Consider then the m-step transition probabilities.
These are the elements of the matrix Bm. As the
channel state depends on L symbols, and these are
assumed to be statistically independent, the state
Them: m2L, is independent of the state @}, , so that we

have

P{c-m-m = (A.""'* AJ"_) ld’n = (Ai,a---, Ai._)}

(3.6) L
= TTP{anz AJ}’ m=2L
=1 2
Thus, £L=BL+‘=..., and EL has identical rows. We
can write
(3.7) [

whicnh shows, in particular, that the channel state
sequence (@n) is a fully regular Markov chain, i.e.,
all eigenvalues of the transition probability matrix P
having unit magnitude are identically 1, and 1 is a

simple eigenvalue.

18
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p‘j is given by

Pij - P{c‘n = (Aj. yeers Aj..) Id‘n_‘ . (Ai, poos Ad )}

(3.4) = P{a,.., - Aj‘ RS Qn—L'Aj._la\\-a'Ai,‘r--y [ P "Ai,_}

= P{an-s‘A.i,} 8:'.,5z Sigjs e 85—;-111. ’
where 6}]- denotes the Kronecker symbol (8“=1, and
§y5 =u for i£3).

As an example, assume M=2, A1=0, Az=1, and L=3.
The noiseless channel has eight states, whose
lexicographically ordered set is

{CGL0), (001, (V1LY ,(111),(100),(101),(110),(111) ). The

transition probability matrix of the corresponding Lo
Markov chain is "-'..-tl:.
(000) (001) (010) (014) (100) (HOY) (410} {14 e
(P, 0 o O p © o O] ,
Po 6 0 O p O O O (004} R
0o » © o 0 p o Q | (010) f

~ Q o) B O o] 0 P O |[(100)

O o ®» o O O Pp O j@OM

L © © 0 P 0 0 0 PpP|mo

o o] (o] 0
(3.9) Po °© 90 LAP R




channel states, which forms a Markov chain. If each of ’

the symbols a, can take on M values, the states can T;

take on Mt values. . ';%

e

To derive the transition matrix of the Markov .3 .
chain of the channel states, we shall first introduce a kA

suitable ordering for the values of O, . This can be .i

done 1in a rather natural way by firstly ordering the

elements of the set {Aq’AZ”"’AP1 } of the M values

taken on by the a, (a simple way of doing that is to
Stipulate that Ai precedes Aj if and only if i<j), and
then inducing the fu.l)Hwing "lexicographical'" ordering

among the L-tuples (AL .Ajz,...,AjL):
(Aj1.---. AjL) precedes (Ai,1 vy Ag L )

j‘ < 5-1 s Or
(3.3
if and only if{ J,®31 and J,< iz, or

J1‘11a Jg=12, and Js<1;:etc.

Once the state set has been ordered according to

the rule (3.3), each state can be represented by an -.#
integer number expressing its position in the ordered \§
set. Thus, if i represents the state }%i
(Ai,'Ail""'AiL)’ the one-step transition probability - ‘;i.

16
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spectrum. It includes modulator, filters, etc., and
transforms the discrete-time input sequence 1into a
continuous waveform y(t). We assume that the channel
has a finite memory, i.e., that at time t the channel
output y(t) depends only on a finite number, say L, of
past source symbols besides the one emitted at time t.

We can write

[ 2]

(3.1) y(t) = ) q(t-nT;a,q,)
Ne=-00

where

(3.2) T, = (an_1,an_2,...,an_L)

is referred to as to the state of the noiseless channel
during the n-th time interval ((n-1)T,nT). The
waveforms q(t;an’oh) take wvalues in a set of
deterministic, finite energy signals. The hypothesis

that the channel memory 1is finite justifies the

assumption that this set includes a finite number of

different waveforms.

The emission of ap, from the source forces a
transition of the channel state from Oy to Og,, . A

sequence of source symbol thus generates a sequence of

15
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An efficient computational technique to evaluate
the bandwidth occupancy, and more generally the power
spectral density of a digital signal, was developed in
[22~24]. This technique 1is based on a Markov chain
model of the digital signal, and is general enough to
handle a large variety of situations: for example, it
can 1include the effects of convolutional coding, linear
filtering and nonlinear processing of the digital

signal.

The communication system to which our theory
applies is shown in Fig.71. The source emits a

stationary sequence (an) of discrete independent

(a ) noiseless v(t)
source n ‘

channel

Fig.1 - Noiseless part of a digital communication

svstem.'
random variables whose statistics are known. Each apn
is emitted every T seconds. The noiseless channel 1is

ass.med to include every device between the source and

the point at which wWwe want to evaluate the power




The need for modulation schemes that employ
efficiently bandwidth and power in digital radio
communication systems has led to the extensive use of
phase-shift keying (PSK). As power spectra of PSK
signals exhibit sidelobes which may interfere with
neighboring channels, a certain amount of filtering is
necessary at the transmitter, to provide sidelobes
removal. The nonlinearity on the transponder will
however affect the power spectrum shape so as to
restore the spectral sidelobes, and this effect must be
accurately controlled 1in order to avoid unwanted

interference from and to neighboring channels.

For these reasons, it 1is wuseful to have a
technique to compute the power spectrum spread produced
by nonlinearities operating on digital signals. These
computations are usually performed by simulation, i.e.,
by applying a pseudorandom sequence to a model of the
system, and taking the Fourier transform of the output
signal. Such a procedure, besides being rather
time-consuming, usually 1leads to results showing the

power spectrum in a crudely approximated form.




3.0 POWER SPECTRAL DENSITY OF DIGITAL SIGNALS

TRANSMITTED OVER NONLINEAR CHANNELS

Efficiency of use of the radio spectrum for both
terrestrial annd satellite digital systems is a subject
of increasing relevance in communications, and spectrum
occupancy 1s a significant parameter in performance
evaluation. In fact, in many situations data streams
from users are assigned adjacent frequency bands that
interfere with each other in a larger or lesser extent
depending on the bandwidth occupancy of the modulated

signal. Thus, spectrum occupancy is a rough measure of

ad jacent channel interference.

Moreover, for spectrum conservation the bandwidth
occupancy of modulated signals must be kept to a
minimum, without impairing the system performance.
This 1is particularly relevant in the presence of
channel nonlinearities, which may restore the signal
spectrum sidelobgs that were previously removed by
linear filtering. An important example where this
Situation occurs is provided by satellite transponders
in which a nonlinear device 1is present -- e.g., a

traveling-wave tube amplifier, or a hard limiter.

12
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moments.

The solution of this problem can again be found

from Krein-Nudel'man theory of moment bounds [21]. If
n moments of the random variable R are known, it |is
possible to evualuate upper and lower bounds to (2.4)

' that are sharp, i.e., no other bound based on moments

. can be tighter. Although the theory 1is rather

involved, the algorithm which provides the result is
relatively easy to use. The algorithm itself is based
on the search of the roots of a polynomial which
provide the points of increase of the distribution
functions giving the upper and 1lower bounds sought.
Another algorithm, which appears to be computationally
more stable, has been obtained and is presently being

developed, and we hope to report on it soon.

11
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More generally, we uan assume that we are dealing
with a random variable R whose first n moments are
known, and we want to fin.! upper and lower bounds to

the quantity (2.4) for any given t.

This problem arises in sSeveral instances. For
example, wWe may want to determine the cumulative
distribution function of a random variable made up as
the sum of a number of i1ndependent random variables.
The exact distribution function, apart from a few
special <cases, 1is difficult to determine, but as the
moments of a sum of random variables are relatively
easy to compute, we can use this theory to find upper
and lower bounds to the distribution function,. This
works better that the assumption, which is often made
in this situation, that the random variable we are
dealing with are Gaussian ~-- this may make sense when
the number of random variables involved is very large,
but has still to be verified. Yet another application
arises when a digital communication system is perturbed
by a noise whose exact statistics are not known.
Sometimes the assumption of a given distribution whose
parameters fit those measured will work, but it may be
preferable to use the theory presented here, which

requires ro hypotheses to be added to the knowledge of

16
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(D8)

POWER SPECTAUM

FREQUENCY / BT RATE

Fig.2 - Power density spectrum of a binarv PSK signal.
a- Before filtering
b- After filtering (filter is a 4~-pole Butterworth
with a 3-dB bandwidth 2.4 R, R the bit rate
c~ After a TWT driven at saturation
d- After the same TWT, with a 6-dB input backoff
e~ After the same TWT, with a 12~dB input backoff.
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This figure shows the power density spectrum of a

binary PSK signal first filtered through a fourth-order
Butterworth filter , and then passed through a
nonlinear amplifier driven at or near saturation. It
is seen that, although filtering removes the sidelobes,

they are restored by the nonlinearity, to an amount

that can be evaluated with a good accuracy.

Other avenues of attack have been explored as
well. One which at first seemed particularly promising
is the use of Volterra series to model the nonlinear
channel. This approach proved to be very fruitful in
the context of evaluation of error probabilities, as
explored in [26-27]. However, Volterra series do not
appear to offer any particular udvantage when the
nonlinear channel has to be modeled in order to derive
the power density spectrum. Actually, our practice has
shown that when the channel is made up by cascading a

number of blocks (typically, filters and nonlinear

memoryless devices) the best approach to derive the ; 5

waveforms at its output 1is simulation. After this ]
preliminary simulation has been performed, the _f%
analytical tools previously described can be wused to ;ii
compute the power spectrum. f;ﬂ

‘@
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4.y OPTIMAL RECEIVING FILTER FOR DIGITAL TRANSMISSION

OVER NONLINEAR CHANNELS

A problem arising in digital transmission over
nonlinear channels is the design of modem filters.
Filters incorporated in present-day modems are not
necessarily optimum when the channel is nonlinear, as
they are usually designed with the Nyquist theory in
mind. The early INTELSAT 4-PSK TDMA modems specified
Nyquist filtering, with a 30-percent rolloff Nyquist
transmitting filter combined with an f/sin f aperture
equalizer. The receiving filter was a high-order
elliptic filter, whose bandwidth was selected so as to
maximize the noise rejection while not degrading the
Nyquist response of the transmitting filter [(281.
Recent research is aimed at selecting optimum filters
for a nonlinear channel model, either by choosing the
best values of the parameters within a given filter
family f29] or by designing the frequency
characteristics of a filter which is optimum under a

specified criterion [30].

By using the channel model described in the
previous Section of this Report, and which is based on

a set of output waveforms connected to form a Markov

chain, we developed a theory to design an optimum
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receiving filter for digital ¢transmission over a
nonlinear channel. The filter 1is chosen so as to
minimize the mean-square error between the transmitted
symbols and the samples of the demodulated waveform.
Besides providing closed-form expressions for such
optimal filters, it was shown that the structure of the
filter corresponds to a bank of matched filters, each
followed by a linear transversal filter. This result
is a generalization of a well-known property of optimum
receiving filters for linear channels. The performance
of the optimum receivers can be computed, and its

performance compared against that obtained through

conventional designs.

Some results obtained are reported in Appendix C.
It must be noticed that the full generality allowed by
the theory developed there has not been exploited in
full. We hope to report soon on this topic, by
preparing a comprehensive paper covering also the
connection to previously known theories, and showing
the applicability of our theory to a situation in which
the channel disturbances include also interference from

ad jacent channels.
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5.0 MULTIDIMENSIONAL MODULATION AND CODING FOR

BANDLIMITED CHANNELS

In digital communication over radio channels, both
available spectrum and transmitter power are generally
limited. Thus, to cope with the ever-increasing demand
for digital communication services, more efficient
1 transmission techniques are called for, and the search
i‘ for bandwidth- and power-efficient modulation systems
has become a very active research area. In fact, it

has been recognized that a third relevant factor enters

in the tradeoff between bandwidth and power, that 1is,
the complexity of the communication system. In other

words, if a certain amount of signal processing is

allowed at the transmitting and receiving ends of the

system, 1its performance can be improved without

increasing neither its bandwidth nor its power.

For example, as higher-dimensional signal sets are

known to afford possible performance improvements, :
- 2

four-dimensional modulation can be used in the signal ;;
space constituted by two orthogonally polarized ;J
1

electromagnetic waves. Another technique, which was ]
recently proposed by Ungerboeck [31) and which has been 7%
receiving a wide attention (see also [32]), is based on :;i

. N

a combined modulation/coding approach. In standard ol
[l

9

A
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applications of error-correcting codes, extra bits must
be added to the transmitted symbol sequence, with the
modulator operating at a higher rate, and hence
requiring a larger bandwidth. On the other hand, use
of coding can decrease the power requirement necessary
to achieve a given performance, so that this gain in
performance (usually referred to as the "coding gain")
can compensate for the sacrificed bandwidth. In other
words, the tradeoff 1is 1increased complexity and
decreased bandwidth efficiency for 1increased power
efficiency. With Ungerboeck codes, one can avoid the
loss in bandwidth efficiency by wusing a technique
characterized by the fact that the redundancy required
by the <coding process 1is provided by increasing the
number of coded symbols instead of the bandwidth. With
these codes, the tradeoff 1s increased complexity for

increased power efficiency.

Some of the results we obtained in the study of
this class of codes are 1included in Appendix D and
Appendix E. In particular, we considered a combination
of multidimensional signal sets and Ungerboeck codes,
an idea which seems to be very promising in terms of
applications. We introduced a new class of signal sets

for modulation, that we call "generalized group codes"
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and which are based on a peak-energy constraint., These
alphabets have a good deal of symmetry, a feature which
is apparently necessary to design good Ungerboeck
codes. Moreover, design techniques are derived, Dbased
on a partition of the signal set stemming from the
partition of a group 1into <cosets of a8 convenient

subgroup (Appendix D).

We have also investigated the power spectral
density properties of the 8ignals oaobtained from an
Ungerboeck code. In particular, we have shown
rigorously that, under certain mild symmetry
contraints, Ungerboeck codes do not alter the power

spectrum of the modulated signals (Appendix E).
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APPENDIX

n this Appendiy we compute the probabilirtie- F{Et’azjlgzz*; for
the «<ityation deuscr-ibed {in  Section 1, We assume that the random
variabies in Lhe sequence (a ) of data symbols are independent, and
“ake non  values i1 the set A={o, ™, ...,¥y4} with probatilities
rozPfa :“h)' T+ ~an be seen that the channel states form a
nnomegeneous  Markov  chain. The one-to-one «correspondence between
channel states and the integers 1,...,M can be set by wrdering the
elements of A (for example,xo< 0(,<...< 0y ¢} and introducing among the

‘L+l)-tuples {a_,a

n_‘,...,an_Li the lexicographical order induced by

the order of A. The states can then be represented by integer numbers
from 1 te M by expressing their position in the ordered set. I'hus, if
~epresents the state (X G0l y ey 2 and i the state

o +

1 .
‘ol O L, O , we have
Jo %, 3

|

p! st =(Lt‘. TR 1. Y5 =(ai .. s, )=

%) ! ! 5] 1
= p du-'-‘u] ,ad =1‘ . 'ai ]*]. 'J sy, LA, =i
i ¥ =1L 0 -
o I ‘]I X 10 ¥ 1]

= p. S Lo 5, .

] | .

o o N -1d

This research was sponsored in part by the
Unired States Army through {ts European
Kesearch Uffice.
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“ip. ' - Model of a digital communication system.
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Assume that we want to evaluate the power spectrum of the signal
x(t) at the output of the channel of Fig.?1. If g(f) denotes the vec-
tor of Fourier transforms of the waveforms {q(t;i)):i, and the symbols
a, are 1independent and identically distributed, with the simplifying

assumption

we have the following result for the power spectrum of x(t):
S0 = el gTie) Aley glen

where Re(.) denotes the real part, the dagger denotes conjugate

transpose,

= P a0 v SRR RS 44 Cpl gmdeLarT
M)y =]+ Fe et e LA

and 5 is the MxM matrix whose elements are the probabilities

y ; i
L T S SIS

(see the Appendix).

6.0 CONCLUSIONS

We have described a number of parameters (error probability,
minimum distance, cutoff rate, spectrum occupancy) that are useful to
evaluate the performance of a digital communication system. A rather
Keneral system mndel has been assumed, which is easily amenable to
analysts and i3 based on the hypothesis of a finite memory for the
transmission channel. Based on this model, we have described the

romputational techniques that can be applied for evaluating those

parameters, { 14]
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1 ~
- expl- W‘ d‘(k,m)] (4.%)

where

N s (T .
a(i,j) = Ilq(t:i) - q(t;3)]7 at
0
are the Euclidean distances between the waveforms of the set
lq(t:i)E:‘. The probabilities appearing in (4.3) can be computed as

shown in the Appendix.

5.0 COMPUTATION OF THE POWER SPECTRUM

Efffcient use of the radio spectrum is a subject of Increasing
relevance in communication. For spectrum conservation the bandwidth
occupancy of any communication system must be kept to a minimum
without 1impairing 1its performance. As many channels as possible
should be accommodated in a given portion of the frequency spectrum.
As a consequence, the spectrum occupancy turns out to be a significant

parameter in the design of a transmission system in which several

users share a given frequency band. Whatever the criterion to
evaluate the spectrum occupancy (for example, the bandwidth in which
99.99% of the signal power is contained) 1ts computation must be based
on the power spectrum of a digital signal. The computation of power
spectrum 18 a relatively simple task when performed by simulation,
which is done by applying a pseudorandom data sequence at the system
input and computing . the Fourier transform of the output signal.
However, tnis procedure, besides being rather time-consuming, leads
usually to the power spectrum in a crudely approximated form. A
computationally efficient technique, which combines simulation and

mathematical analysis, i{s described in the sequel.
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is described in [10].

4.9

Consider now a digital communication system in which @

to be used. To

reasonable criterion would
channel,
done in general, because

feasible 1in the practice.

“nsult concerning the error probability that can be

g ven channel as a3 function

tve following there exists

that the error probability is

ple) < ¢

where ¢ 1s a constant, and Ro
and  called its cutoff rate.

at which the attainable error

block length of the code. The larger R,, the better the channel,
Hence, R, provides a wuseful one-parameter characterization of the
quality of the channel in “erms of its coding capabilities [11].
An expression for the cutoff rate of the channel of Fig.1 has
~een derived in 712] (see also [13]) for similar cumputatinns when a
convolutional code is used!. The following result holds:
4
= W, 4,00
where A 13 the unique real and positive =igenvalue of the Mixm! .j
matrix whose elements are :
el
o)
9
.‘:‘
4
"4
®

COMPUTATION OF THE CUTOFW

evaluate the coding capabilities of the channel, a
be
and the corresponding error probability.
the selection of

Now,

186

RATE

code has

to choose the best <code for that

But this cannot be
the hest code 1is hardly
information theory provides us with a
achleved over a
of the transmission rate. The result is
a block code of rate R and length n such

upper bounded by

(4.1)

is a parameter ‘Jepending on the channel,
This relation p'aces in evidence the way

probability decays as a function of the

N N VSN
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73.1) it is seen that this is the relevant parameter for assessing the
performance of a digital system equipped with a maximum-likelihood

sequence detector.

Unfortunately, the minimum distance does not seem to be
expressible in a closed form. Moreover, its direct computation based
on (3.2) is impractical in most cases of 1interest. Thus, for the
evaluation of d"““ one must resort to algorithms suitably designed.
“ne such algorithm has been applied in [8] to the transmission over
Lintear channels. It is based on a computer-search approach, and
results into a small "sufficient" set of sequence pairs (E“),(Eé)
d1ffering in few positions. The minimum
0T‘(§ fq(t—nT;gn)~q(t—nT;§;)]" taken in this set provides the

minimum distance.

The computation of dmi for a nonlinear channel has been studied

n

in 791, under the simplifying hypothesis that only symbol sequences
differing in just one symbol contribute to the value of the minimum

dist-nce. Consider for simplicity binary symbols, and L+1 consecutive

-—

channe! states = 2(§n,§n*‘,...,§h+L). Take  another L+1-tuple

-~ I3 ’ ’ '
;_»(En,§N*‘,...,§"*L), with §“ differing from gn only in the first

position, §;" differing from § only in the second posfition. E

'
Net Nne2

from §"’zin the third, etc. Compute then

yob

. L
S D A CUCETANPS B A TL A
=

for all possible pairs = ﬁ;' (for uncoded binary symbols, there are
RZ(L-‘) such pairs) and take the minimum value found. This is the
m:nimum distance. Although this method needs the manipulation of a
‘arvge number of sequences, the numerical operations required are quite

Aaimple,

Yet another technique for the computation «f the minimum distance

Rt andh Sogh (L PR

J.i‘

. . .4 L}
MY




———— ad vy W e T - - -
P—— T — PR i S e T R :

184
same set of moments can be tighter.

Moment bound techniques are described in [3] for linear channels,
and in [11,7123,[4] for  nonlinear <channels. In %Y the case of

correlated random varliables a, is considered.

2.0 COMPUTATION OF THE MINIMUM DISTANCE

In the previous section we have considered the error probability
of a3 simple receiver whose decisions are taken symbol-by-symbol. In
certain systems, however, it may prove highly beneficial to include a
more sophisticated receiver to achieve nearly ideal performance. This

can be done by using a maximum likelihood receiver, {n which the

decisions on a data sequence are taken by considering all the possible
transmitted sequences and choosing the one most likely on the basis of
the observed signal y(t). The operation of such a receiver 1is
analyzed in 6] for linear channels, and 1in (7] for a nonlinear

satellite channel.

When this receiver is wused, the symbol error probability 1is

closely approximated, for a small nolse power, by

min

a
¥ arfe ( Tl ) (3.1)
e}

n

where K is a constant, N,/2 {8 the two-sided power spectral density of

the noise v "), and d_ .= 13 the minimum distance, defined as

A
2 ; PVl t-nT:E") = qlt-1T:f 2
min MZ, 1t nT,En) q Is)“)) il (3.2)

N ) .
(Y415 ) 3]
n n

with f2(t)§* denoting the energy of the signal z(t). In words, dyin 18

the smalliest possible Euclidean distance attainable between received

signals stemming from different transmitted symbol sequences. From

a2 i
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If the channel is not linear, q(t ;E,) depends on a, ,a, ,,...,8,
in a nonlinear way. A useful representation of this dependence is
provided by expanding the functional relationship between q(to;En) and
8,+8p4.4 ++-+13p._ in a Volterra series, which will be truncated to a

finite number of terms. This representation is discussed in [1] for

baseband channels, and in (2] for passband channels.

Consider now the problem of evaluating the averages appearing in
{2.2). !n the most general case, we are faced with the computation of
an average of the form E[f(anﬂ,an_z,...,an_L)], where f(.) is a known
functton of the L random variables a,_ ,,...,3, . In principle, we
can compute this average by enumerating all the possaible values taken
on by t(.), but this technique is computationally impractical whenever
the number of these values is very large. As an example, if the
random variables a, are independent and take on N values, there are Nt
pnssible values for f(.). For instance, N=8 and L=10 would 1lead to

about 10? computations of the function f(.).

A method that yilelds both accurate and computationally tractable
results for the computation of the average required s based upon the
theory of moment bounds. Basically, it consists in the derivation of
upper and lower bounds to E[f(anﬂ‘,...,a“_L)] based on the exact
evaluation of a number of averages like Elp(a,_,,...,8,_ )], where
pl.) vs a polynomial function. When the random variables a, are

statisti—~ally independent, the bounds can be expressed in terms of the

momant s

K T
i A 14 Y
b =k(nn) 0.7

‘rese hbsunds are sptimum, in the senses that no other bounds using the -
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ple) = Pla # a )
19 n
= 3 P > C z-11+ ' Pl : ]
boPiv(t )0 |a“ tie D oply(t ) <9 lan=+b)
(o.1)
= 1"(_1(1,0;{!1)1'\- ,\1“|,’n=~.’) + 5 P((l(to;gn)+v<0!an=+'\

where VSV(t°+nT) {s a Gaussian random variable with 2ero mear and

known variance oy . From (2.1) we can write

(s
Ple) = & Elerfe [.Ejégiinlj[an--l}
)
< U‘J

+ L Elerte (_ZﬁlziﬁnlJ!a =+1}
L \ ~ n
Vo \)\‘

where F denotes average taken with respect to the random variable §".

The following tasks must be accomplished for the computation of
Plan, Firstly, we have to write down an explicit expression for

u(to:gn). Secondly, we must compute the averages in (2.2).

Suppose first that the channel i3 linear. Then q(t°;§") depends

iinearly on the random variables Apy8p g1 e se98p_ Ly 30 We can write

q“"o;{‘n) =L Mt (2.3)

where h ,h,,...,h  are the samples of the impulse response of the

channel. Hence
q(to;gn) = hnan + 7 (2.4)
where
L
ZQZ L.,a

&y inti (2.5)

ts called the intersymbol interference term. Observing that 2 1{s a

symmetric random variable, i.e., Z and -2 are equally distributed, we

nave from (2.2):
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where (q(t;i)Eﬁ is the set of waveforms (of duration T) observable at
: 1
the output of the nojiseless channel 1in the interval (0,T). The

sequence (§ 1s made up of random variables, called the <channel

n )V\l -0

states, taking on M possible values. With our assumption of a finite

memory for the noiseless channel, each §“ depends on a finite number,
say L+1, of 4input data symbols a, , so that we can set a one-to-one
correspondence among the & and the (L+1)-tuples (a, ,a, .. -,3,._ ).
This correspondence allows one to determine the statistics of the
sequence (En), and hence of x{(t), when the statistics of the data

sequence (a,) are completely known. We assume here that (a,) is

stationary.

The signal observed at the receiver front-end is, from Fig.T,

yi£) = x(+3) + wit) “1.2)

where v(t) is assumed to be a white Gaussian noise process.

2.2 COMPUTATION OF ERROR PROBABILITY

The error probability is a basic measure of the performance of
digital communication systems. In this section we consider a
situation in which the receiver operates by sampling the received
signal v(t) every T sec.The decision 3; on the n~th transmitted symbol
i3 based only on the value of this sample. For simplicity's sake, we
shall confine ourselves to consideration of the case in which the
input data symbols take on with equal probabilities the values +1, and
modu'ate linearly a gi&en waveform (this situation corresponds to
binarv PAM, or PSK). The receiver compares the received sample with a
zer. threshold, and sets 3n=~1 if 1t lies above the threshold, $n=-1

otherwise. For a sample taken at time th= tb+nT , the =symbul error

prevabtliity i3 given by




the evalustion of their performances becomes more demanding. For

example, in satellite communications the efficient use of avalilable

signal power and bandwidth makes them to operate on a tightly

(say) is not analytically tractable.

b
g
il bandlimited nonlinear channel, where the computation of error rates
}
4 The aim of this paper is to review some of the techniques that
S

have . - recently proposed for evaluating the performance of digital

communic.  ion systems. The emphasis 1is placed here on the
computational algorithms that allow this evaluation to be performed
without resorting to simulation techniques, which might be either
prohibitively expensive or not completely satisfactory in terms of

accuracy.

We are interested in considering digital communication systems
such as: high data-rate transmission systems with limited bandwidth;
satellite and microwave radio-relay 1links with nonlinearities;
multi-path and fading transmission systems. The common feature of all
these systems {s that they can often be modeled as follows. At the
receiver front-end of the system there is a desired signal component
disturbed by an additive noilse term. Under the assumption that the
noiseless portion of the channel has a finite memory (i.e., the
received signal at any given time 1instant does not depend on the
infinite past of the transmitted signal) the number of waveforms that
can be observed, before the addition of noise, in any time interval of
finite duration is finite. With reference to Fig.1, if T denotes the

inverse of the symbol rate, 1i.e.,the time 1interval between the

emission of two con3ecutive symbols, the signal x(t) can be

represented {n the form

xord =S eenTy ['n) 1.1
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COMPUTATIONAL TECHNIQUES FOR EVALUATION OF
CCMMUNICATION SYSTEM PERFORMANCE

Ezio Bigliert

Dipartimento di Elettronica
Folitecnico - Corso Duca degli Abruzzi 24
T~10129 TORINO (Italy)

SUMMARY

In this paper we review some techniques for
evaluating the performance of digital
communication systems operating an channels
characterized by additive Gaussian noise as well

as linear and nonlinear distortions. The
parameters considered are the error probability,
the minimum distance (useful when a

maximum-likelihood sequence receiver is used), the
cutoff rate (useful when coding has to be used on
the channel), and the spectral occupancy (useful
when two or more users share the same freguency
band). The emphasis is placed on the
computational algorithms that allow these
parameters to be evaluated numerically.

1.0 INTRODUCTION AND MOTIVATION OF THE WORK

In recent years, there has been an increasing interest in digitasl
communication systems. This is partially due to the availability of
novel digital signal processing devices as well as to certaln
attractive features of digital systems, as for instance the fact that
digital signals are more amenable to enciphering and deciphering than
analog signals for securé communication purposes. On the other hand,
the ever-increasing demand for digital services has suggested the
introduction of more efficient, and hence more sophisticated,

communication systems. As the complexity of these systems ... :ases,

NATO ANESenes Vol bh

Intormation Lochnetogy aned the € omputer Network
Edited by K ¢+ Lequchamp
< Sprnges Vb Berlin Hledetharg 1984

e T




Appendix A

IR IR PN W




12. E.Biglieri, "Analysis of random digital

signals", XXIst General Assembly of URS!,

Florence (Italy), August-September 194

13. E.Biglieri and M.Elia, "Multidimensional
modulation and coding for bandlimited digital
channels", International Conference on
Computers, Systems and 3ignal Processing,

Bangalore (India), December 1984

(M Tl S g oo, oy o ot coe o e o

T'rvrr 4 vw -

38

NS PSP WL IS R, WAL DO WAL I T LI TP I UL ST W D DR R, SR S S O D s w e Lt

~q

b QU ‘:-



.....

Appendix B




— e o e o o ——y
PPt
-

LEEE TRANSAC [IONS ON INFORMA HON THPORY, VOL. 11-3), NO. 2, MARCH 19K4 44)

Probability of Error for Digital Systems with
Inaccurately Known Interference

EZIO M BIGLIER!I, SENIOR MEMBER, 1ELE

Abstract —The “moment bound theory™ is known to provide a useful
technique to evaluate error probabilities for digital communication systems
in the presence of additive noise and random interference. In this corre-
spondeice (his theory is extended to the caye where the moments of the
interference are known only within certain intervals, and upper and lower
bounds to the crror probabilities are sought. A situation like this can occur
in several applicutions. For example, the exact statistics of the interference
may not be known, and only estimates of the first moments may be
available. Another example arises when the signal is disturbed by intersym-
bol mterferenne generated by # channel impulse response whose samples
are kpown only in a certamn interval —either because they have been

Manusenpt recensed Novemiter L7200 resead June to T98Y This rescarch
was spoterad e part by the L anad States Aty through its Buropean
Reseursh Office This werk wa prosentcd ain part at the TRLEL Intemational

Svmposium on Infortanon Thoors Foes Arey France: June 21-25, 1982
The author s with the Dipanooe coe de Elerroniea Pohieemico - Corso Duca
dJeglt Abragzs 24 B 10129 Toanee Lafy

measured with finite accuracy, or because we want 1o estimate the ervor
probability for a class of channel impulse responses. Several numerical
examples are provided which show the range of applicabilit; of this
technique.

I. INTRODUCTION

In recent vears, several technigques have been proposed 1o
evaluate error probabilities for digital communication systems in
the presence of additive noise and random interference. Among
these techniques, multidimensional moment bounds [1] appear to
be most useful, because they are generally very tght and can be
evaluated with modest computational effort. Moreover, no other
bounds ba =d only on the moments of the random interference
can be tighter.

In this correspondence we cxtend the moment bound theory to
the computation of error probabilities in a situation in which the
moments of the interference are known only in certain intervals.
The model assumed for the analysis is the {ollowing: consider a
digital communication system where the output decision random
variable at each sampling instant is given by

R=ah+ Z+v, (1.1)

where a is the input information symbol taking on values in a
finite set, 4 is the known positive peak overall sampled system
respoase, v is an arbitrary random noise with known cumulative
distribution function F,(-), and Z is the random interference,
typically modeled as a sum of independent random variables. We
assume that the random variables a, Z, and v are mutually
independent, and that Z has a finite range [ - D, D). Evaluation
of the error probability of the above system can be based on
moment bound theory by first expressing it as the average

P.= E,[Q(Y)], (1.2)

where Y = f(Z) is a random variable with finite range {a, A],
€(-), f() are known functions, and E, denotes average taken
with respect to the random vanabie Y. Then, if the finite se-
quence of moments { ¢}/, is available, where

¢ ®E(Y']), =1, n, (1.3)

the moment bound theory, as developed by Krein [2), provides
the tightest upper and lower bounds to £,{Q(Y)] in the form

N N
Zwe(y) s Ev[8(M] s Twaly). (14
im} =t

where the abscissas { y,},C1. { )/} and the weights {w/}|,
{w,” )"\ can be computed on the basis of the moment sct
{c,};.,. The values of N' and N”, as wcll as the rules for
computing weights and abscissas in (1.4), vary according to the
parity of n and to the sign of the (n + 3)rd derivative of the
function @ in the interval {a, b). Dctails on the actual evaluation
of moment bounds can be found in [1]. togcther with a number of
generalizations of the mode! considered here.

As an example, if a takes on vajues +1 with equal probabili-
tes, and v is a zero-mean Gaussian random vanable with vari-
ance 07, the error probability 1n (1.2) takes the form

P~ 1:,[()("—5-‘2)]. (s

\ n

where

"'jfxcxp( -t /2) dr.

[y

Q(x) & (2m)
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error  peobability

Fig. 1. Locus IT of vectors ¢ such that ¢’ « ¢ « ¢”.

Hence, we can write

Y
P,-E,[Q(;)]. (1.6)
This is equivalent to the choice
Y=h+2Z Q.7

and Q(x) = Q(x/a) in (1.2). However, this is by no means the
only available choice. In fact, if we take

Y= (h+2Z), (1.8)
the error probability can be expressed as
P.-EY[Q(—@)]. (19)

which is valid provided that # — D > 0 (the “open-eye” assump-
tion). In this case Q(x) = Q(Vx /o).

In this correspondence we shall consider the situation in which
the moments (¢, )., are not available cxactly, but it is known
that they be in finite intervals In other words, two sets {¢, ).
and (?,}/., are known such that

¢, Sc Sé,. t=1. -.n, (1.10)

and we want to find upper and lower bounds 10 the system error
probabilities.

A situation like this can occur in several applications. For
example, the exact statistics of the interference may not be
known, and only estimates of the first moments may be availabie.
Another example arises when Z represents the intersymbol inter-
ference generated by a channel impulse response whose samples
arc known only in a certaun interval. This may occur because
those samples have been measured with finite accuracy, or be.

cause we want to estimate the error probability for a class of
channel impulse responses.

The solution to this problem can be obtained by using a theory
developed by Krein in conjunction with the so-called
“Cebyiev-Markov problem with moments in a parallelepiped”
{2]. This theory deals with the cvaluation of upper and lower
bounds of the integral

[-/;bG(x)dP(x),

where G(-) is a known function, and P(-) is the cumulative
distribution function of a random variable whosc first # moments
are specified in the form (1.10).

II. MOMENT BOUNDS WITH MOMENTS IN A
PARALLELEPIPED

In this section we shall briefly outline the theory of moment
bounds with moments in a parallelepiped, and we shall derive a
solution to the problem posed in Section 1.

Consider first the set of all the probability distribution func-
tions Fy(-) of the random vaniablc ¥ whose range is the fimte
interval [a, b] and whosc [irst n moments are ¢, * ,¢,. Denoting
such sct by V(¢), where ¢ is the n-vector whose components arc
€1, ¢, the “classical” moment problem can be [ormulated as
the search for the minimum and maximum valtues of the integral
/:‘i(y) dFy(y) as F, ranges over V(c). More specilically, we
see

I(e)=  min ["Q(y)dFy(y), (21)
and
b
I(c) = F'T%)fuﬂ(y)dl‘”y(.v), (22)
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Consder then two n-vedtors ¢ and ¢, with components ¢;.,- - - .¢,,
and ¢;. - . rospectively We deline a parual ordenng in the
space R” of macctons by defimng ¢ < ¢”1f ¢” % ¢” and

(-0 s DTt k=10 a0 (2

The et of vectors ¢ such that ¢ < ¢ < ¢” 1s then the paral-
letepiped
[ URPUE (R § RERPURP I 0 § MNP LN S GRS
(2.4)

The ponts e and ¢ are the endpoints of the “oblique diagonal™
<Ol ses g 1 for an exampic). We have the following result.

Theorem 1 {2, p. 208]. 1f ¢’ and ¢” are moment sequences of
random vanables with fimte range [a, b), and a > 0, then any ¢
such that ¢’ = ¢ = ¢” is a moment sequence.

Let us now suppose that the random variable ¥ has moment
scquence lving in the parallelepiped 11 whose endpoints of the
obiique diagonal are the n-vectors (¢, c¢3, ¢3,-¢° ) and
(e cvoey oy U we denote by V(T1) the set of ail the
probability density functions whose range is [a, 4] and whose
mement sequence hes in the 11, the moment problem considered
m the :nuoduction can be formulated as the search for the
miaumum and maximum values of the integral [?Q(y) dFy(y) as
F, () ranges over ¥(I1). That is

. b
1 - ,_yguyr(amfnn(y)dry(yx (2.5)
and
0= ma [0 dF(). @6)
F,eVill)Za

The following theorem holds.

Theorem 2 [2, p. 220]: 1f I is the set of n-vectors ¢ such that
¢ < c=c” then

)y =1(c) @7
and
(1) =I(c”) (2.8)
provided that
a>0 (2.9)
(-1 L) 20, k=1,2.--.n. (2.10)
QY1) >0, Jorastsh (2.11)

As a > (1 may he arbitranly small, the rule for determining /(11)
and 7(1h) embodicd in Theorem 2 can be extended to the case
g =02, p 220

Before proceeding further, et us comment bricfly on the resulty
summanzed by the theorem. Il the technical tonditions
129) (2 11) are sansfied, then E,|Q(Y)). and hence the error
probabihty, 15 bounded above and below by two “standard”
imoment bounds (e”) and /{¢’). Evaluation of these two bounds
can he pecTormed by using the techmgues described 1n 1), where
the mement sequences 1o be used for the calculation are obtained
by taking alternately the upper and lower bounds of (110} In
fact. by companson of (1 11) and (2 4) it is seen that the vectors

cland o o beused an (27 (2 8) are given by
1 “(n‘.|."4.c‘, .0)
[ I N S '.("”)

fovp meven andd
L A S ST |
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TABLLE L
CONDIIIONN FOR THE VALIDITY OF THIOREM 2

Y = 1(7) Q) Conditions
Y=h+ 7 Q(l) ﬁ—:—l—)A.\-r,‘_nmjd
o da
e e 4~__¥.,; U S LN
Yo=tht 2) Q(-"~~) h= D0 nodd
AN

11, APPLICATION 10 T GaUssiaN Casg

In this section we shall examine closely the implhcations of the
technical conditions (2.9)-(2.11). Since their validity is dependent
on the choice of the function §(-). we shall consider the two
special cases considered in Scction I, namely, (1.7) and (1.8).
corresponding to U x) = Q(x/¢) and Q(x) = Q(f.\'-,/o) For
other possible choices of £(-) (see {1]) the analvsis can be worked
out by straightforward extension of the techniques presented
here.

Consider first condition (2.9), which requires min ¥ > 0. This
is equivalent to the requirement that A — D > 0 (the open-cye
assumption) when (1.7) holds. !f (1.8) was chosen, condition (2.9
is always satisfied, but the eye must be open for (1.8) to hold
Thus, & — D > 0 is a necessary condition in both cases.

Consider then (2.10). If Q(x) = Q(x/0). we have for k > 1:

LEX!
T LA R PITY - (-1) - a2et ( a )
( 1) ﬂ ((I) 2‘/20‘ﬁe ’Ik-l ﬁd .

(31)

where H,(-) is the Hermite polynomial of degree o (3. p. 691).
Hence, for (2.10) to be satisficd, the following must hold:

(-—1)""”&~l(:/§_)20' /("1.2.“-.». ("2)
[

and
(-1n""'e(%) 0. (3.3)

If nis even. (3.3) cannot hold true; if # is 0dd, (3.3) is always
satisfied, and a sufficient condition for (3.2) to hold iy that
a/ 20 be larger than the largest root, say £, ;. of H, (x).
k = 1,2,---.n. Moreover, since the value of ¢, ., increases with
increasing k, the sufficient condition becomes

a
—_—— 21, | (R}
V2o '
where 1, denotes the largest root of M, (x).andu = h ~ D.
I on the contrary §( x) = Q(/x /o). from [1} we have

()" P ey = (- g aYe @
k=1, ono (13}

where g, (v) is a nonzero polynomial with nonncgatine cocfl:-
aents. Eq. (3.5) shows that, since o > 0, for 7 odd (2.10) 1 alwass
satinficd

Consider finglly (2 11 The computations just pecformed can
be used to show that fur () = @easa)y (211 holds trae for o
udd provided that

h D

R (v6)
/ "

vle

Since 1, > 1 thes conditions amplies (38 as well Simnlarly,
tor vy = QG 7o ond modd it can be seen that (2 H always
holds true

The condihons for the vahiduy of Theorem 2 are summanzed
in Table I Tt i seen that 1in both cases i 8 necessary that a by
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Fig 2 Upper and tower beunds w crror probability for a binary communi-

cation sysee Distuthance aie addiine Gaussian noose and intersymbol
interferenee generated By o Giaussian pulse whose samples can fluctuate
Aenaly of pclative wdtho e poncoeat asound ther nonunal vatues,

odd However, s s not o restnctton [n fact, 1t can be castly
proved that it s sufbacent weodhange 820 ) into - Q(-) (ie. 0
look [or Poasnds fe 700 o0 maxe thie theoiem hold for 2 even as
wed

IV NuMerlicAaL RESULTS

I this section we present some numenca! results for the error
hound theary discussed ip Sections [T and T In parocular, we
shall consider o binary digital system perturbed by additive
Craussian noie and intersvinhol interference.

!
V] L ah,,

1=

(4.1)

where a,, /=1, ./, we .ndependent dentically distnibuted
random varniables taking on values + 1 with equal probabihities
We assume that the samples o, /= 1,- L of the channcl
unpul.e response are snaccarately known, so that each of them
hes 1o a finute snterval whese houndarnies are known:

B o< h, < h,. =1, L (4.2)

Consider the moments o' 70 all of 1ts odd-order moments are
zero, whercas the even order moments can be given the form

E[Z3 ) =Y (2m 2m . S hImE(43)

2my YR

where the summation 1 exiended over all the possible L-tuples of
different indices my. e, such that 2my + 4+ 2m, =2m.
The notauen (2m:2m..- .Im,) denotes the multinomial

and (g, )2, for {u )7 10 (4 %) will provide tvo sets of mo-
ments {¢, )02, and {«,}'., that sausfy {1.10), and hence allow
one to use the theery outhined in Scction 1

These results have been applicd to a svotem whose nominal
mpulse response s specified by the Gavssian pulse
cap - (K /57y sampled ot multiples of 7 thenh = 1.1 s taken
as 6, and

[}
D= Y = 0 1SaR

We assume that the A, i = |, can Tuctuate around therr
nominal values wittun an interval of width 34 We define

Ah
& L0
¢ i 00%

'

and the signal-to-noise ratio (SNR)
. a h
SNR = 2010z

By taking n = 10 moments, and choosing ¥ = h + Z, we obtaip
the numerical results shown in Fig 2 for the error probability of
the digital system.

.

Y. CONCLUSION

The theory of moment bounds was extended to encompass a
situation in which the moments of the random variable represent-
ing the interference are inaccurately known. In this case, the
cvaluation of upper and lower bounds to the error probability is
reduced to the computation of “standard” moment bounds, in
which the sequence of moments 1s constructed on the basis of the
upper and lower bounds to the moments of 7.
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